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The goal of this study is to provide a metric for evaluating a given hearing-aid insertion gain using

a consonant recognition based measure. The basic question addressed is how treatment impacts

phone recognition at the token level, relative to a flat insertion gain, at the most-comfortable-level

(MCL). These tests are directed at fine-tuning a treatment, with the ultimate goal of improving

speech perception, and to identify when a hearing level gain-based treatment degrades phone recog-

nition. Eight subjects with hearing loss were tested under two conditions: flat-gain and a treatment

insertion gain, based on subject’s hearing level. The speech corpus consisted of consonant-vowel

tokens at different signal to speech-weighted noise conditions, presented at the subject’s MCL. The

treatment caused the average score to improve for 31% of the trials and decrease for 12%. An anal-

ysis method based on the accumulated error differences was devised to quantify the benefit each

individual ear received from the treatment. Using this measure, the effect of the treatment could be

evaluated, providing precise characterization of idiosyncratic phone recognition. This analysis

directs the audiologist toward the most susceptible subject-dependent tokens, to focus in the process

of fine-tuning the insertion gain of the hearing-aid. VC 2017 Acoustical Society of America.

https://doi.org/10.1121/1.5016852

[ICB] Pages: 3736–3745

I. INTRODUCTION

The primary purpose of hearing aids is to improve speech

perception. Yet speech has not proven to be effective in evalu-

ating hearing aid processing (Wilson et al., 2007). The inser-

tion gain of the majority of current hearing aids is designed to

compensate for audiometric thresholds, as quantified by the

hearing level (HL) (Steinberg and Gardner, 1940; Zurek and

Delhorne, 1987), along with some assumptions about the

wide band sound pressure level (SPL) required to detect

speech features. However, there seems to be no consensus on

the utility of HL as a metric. Some research has assumed that

audibility is sufficient to characterize speech perception

(Wang et al., 1978; Zurek and Delhorne, 1987). Other

research supports the hypothesis that HL, while a necessary

factor, is not sufficient in accounting for speech perception in

hearing impaired (HI) ears (Plomp and Mimpen, 1979;

Plomp, 1986; Yoon et al., 2012; Phatak et al., 2009; Trevino

and Allen, 2013b). A known problem has been finding objec-

tive metrics of Plomp’s distortion factor, which is based on

the speech reception threshold, a gross bi-syllabic word intel-

ligibility metric. The recent observation denoted “hidden

hearing loss” is an example of a condition, also known as

auditory neuropathy, where audiometric thresholds can be

normal, yet individuals cannot decode speech properly (Starr

et al., 1996). This condition is believed to result from the syn-

aptic loss of high-threshold cochlear inner hair cells, follow-

ing a single noise exposure resulting in a 50 dB temporary

threshold shift (TTS) (Valero et al., 2016).

Various insertion gain prescription methods have

evolved, such as National Acoustics Lab (Revised) (NALR)

(Dillon, 2001), in an attempt to map audiometric thresholds

into an insertion gain. The assumption is that the optimal

insertion gain will improve audibility and, as a result, speech

intelligibility. This assumption is consistent with the results

from Zurek and Delhorne (1987), which showed that audibil-

ity seems to work with reasonable fidelity, when averaged

across a large variety of speech sounds. The persistence of

speech loss, once audibility has been compensated, supports

the possibility that there must be other factors, such as outer

hair cell loss and auditory neuropathy, that are playing an

important, if not a key role, in HI speech recognition.

One major problem with focusing on audibility is that

there has been no fundamental understanding of the precise

nature of the speech cues, namely, which speech features need

to be audible? The popular view of speech cues are distinctive
features such as voicing, manner, place, and nasality (Miller

and Nicely, 1955). These broad-brush features are production

rather than perception based, thus they do not account for the

large within-class variability, because they show no correla-

tion with token errors (Toscano and Allen, 2014). Acoustic

features that are necessary for normal hearing (NH) listeners

are also necessary for HI listeners, but they may not be suffi-

cient (Trevino and Allen, 2013a). Consistent token-specific

confusion groups between HI listeners support the hypothesis

that HI ears use similar cues, despite the audiometric configu-

ration (Trevino and Allen, 2013b). Thus, it has proven difficult

to assign an audibility index to unspecified features.

The NALR method for finding the optimum gain rule is

based on hearing thresholds and aimed at maximizing speecha)Electronic mail: aliabavi@illinois.edu
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intelligibility, while making overall loudness of mid-level

speech comfortable (Dillon, 2001). A speech metric that pro-

vides diagnostic information would be easily justified, but to

date, such speech metrics have not been successful. Many non-

articulatory approaches have been researched, such as listening
in the gaps (Rhebergen et al., 2006) and speech fine-structure
(Apoux and Bacon, 2004). These methods are not feature

based. Thus, it remains unclear how they can deal with the

large idiosyncratic nature of HI phone recognition (Trevino

and Allen, 2013b; Zaar and Dau, 2015). The best approach

among these several methods is yet to be established.

The articulation index (AI) is a venerable feature based

speech metric which depends on the signal to noise ratio

(SNR [dB]) in human listeners’ critical bands (Allen, 2005a,

1994). It has been demonstrated that while the AI is a valid

identification metric for consonants averaged across a corpus

of speakers, it massively fails at the individual token level

(Singh and Allen, 2012; Toscano and Allen, 2014).

It was shown in a number of earlier studies that the

errors HI subjects make depend on the token, not just on

consonant or feature classes (Trevino and Allen, 2013a,b;

Scheidiger et al., 2017; Allen and Abavisani, 2016;

Abavisani and Allen, 2017). These studies showed that our

traditional view of class-average errors is misleading. At any

amplification condition, there are numerous zero-error

tokens along with a few high error tokens, and averaging

hides the degree of error for individual errorful tokens, thus

diminishing the estimate of received benefit from that ampli-

fication procedure. Token errors need to be statistically eval-

uated using a robust procedure. By focusing on token errors,

we satisfy these requirements.

For example, Trevino and Allen (2013a,b) looked at idi-

osyncratic consonant errors for a given hearing impaired

(HI) subject, and showed that the error specifically depends

on individual tokens. Two different utterances of a same

consonant, say /vA/, have different error patterns as a func-

tion of SNR (Trevino and Allen, 2013a, Fig. 4a). In fact, one

/vA/ can (and does) have zero error, even at 0 dB, while a

second /vA/ has 100% error. Following this observation,

Trevino and Allen (2013a, Fig. 5) suggested sorting the

tokens by errors, to parse out token errors.

This suggests the need to look deeper into individual

differences, to get a better understanding of how HI ears rec-

ognize speech (Trevino and Allen, 2013b). For a given HI

ear, there is no way to predict which tokens can be correctly

recognized, and which cannot, as they are different for each

ear. To advance understanding of this idiosyncratic defi-

ciency of HI ears, a more sensitive test is required. Here, we

further develop the concentration on token errors into a met-

ric that is both robust and insightful.

In normal hearing ears each consonant becomes masked

at a token dependent threshold, denoted SNR90 (R�egnier and

Allen, 2008). As the noise is increased from quiet (no noise),

the identification of most sounds goes from less than 0.5%

error to 10% error (at SNR90), and then to chance perfor-

mance (e.g., more than 90% error), over an SNR range of

just a few dB (i.e., less than 10 dB) (Toscano and Allen,

2014). Hence SNR90 is an important token-specific threshold

metric of noise robustness.

SNR90 has recently been shown to be a useful tool for

classifying HI ears (Trevino and Allen, 2013b). When HI

ears are tested at SNR90 for each token, most tokens show

errors around 10%, similar to those of NH ears. However, a

small subset of tokens have errors much higher than 10%,

even approaching chance at quiet. Thus, it is proposed that

this subject-dependent subset of tokens quantifies the idio-

syncratic variability between NH and HI ears.

This study proposes to use the speech tokens at four

SNR levels well above SNR90 (i.e., SNR90þ6 dB). With

such a scheme, a single error is highly statistically signifi-

cant, since for the NH ear, one error in 32 presentations at

SNR90þ6 dB is rare (Singh and Allen, 2012). Therefore,

such a metric is highly efficient in characterizing each HI

ear. Once high error sounds have been identified, one may

seek the optimum treatment (insertion gain) to efficiently

prevent increase of the token error relative to flat-gain condi-

tion. Presumably, with this strategy, a small subset of error-

ful tokens will not be worse than the flat-gain condition.

II. METHODS

There were two experiments, one with a flat insertion

gain, and a second treatment gain that depended on each

hearing impaired ear’s hearing loss. The goal of the study

was to quantify the error for each token as a function of sig-

nal to noise ratio (SNR) and insertion gain at each subject’s

most comfortable level (MCL).

A. Speech materials

Throughout these studies, the term token refers to one of

24 specific consonant-vowel (CV) sounds. The 14 conso-

nants were one of /p, t, k, f, s, S, b, d, g, v, z, Z, m, n/; the

vowel was always /A/ (i.e., as in /cot/).

The CV tokens were drawn from an earlier experiment

that measured the confusions as a function of SNR for 30

normal hearing (NH) listeners (Li et al., 2010). The tokens

were restricted to be noise-robust, defined as having a recog-

nition error as measured by 30 NH ears of less than 10% at

SNR¼�2 dB, with an average error of< 3.1% [i.e., less

than 1 in 32 trials (Phatak and Allen, 2007; Singh and Allen,

2012; Toscano and Allen, 2014) at the four test SNRs (i.e.,

0, 6, 12 dB and quiet)]. During the testing, speech shaped

computer generated thermal noise was added to the token at

one of the four SNRs.

Each token was naturally spoken as an isolated (i.e., no

carrier phrase) consonant-vowel (CV) token, by an

American English speaking talker, and available from the

Linguistic Data Consortium Database (LDC-2005S22)

(Fousek et al., 2004). The sampling rate was 16 kHz.

After amplifying with the target insertion gain, the

speech was presented at each subject’s most comfortable

level (MCL), as determined during initial trials used to

familiarize the subjects with the task (Han, 2011). The sub-

jects were allowed to subsequently adjust the presentation

level at anytime during the experiments. However, none ever

did this.

The speech samples were selected from a pool of six

female talkers and five male talkers. The gender of the talker
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was found to play no observable role in the identification of

the consonant (Trevino and Allen, 2013a,b). Initially, the

test included two talkers (one male and one female) for each

consonant drawn from these 11 talkers, but after the experi-

ment, it was discovered that four male tokens of /f, s, Z, n/

had been damaged when preparing the samples by zero-

padding the onsets and codas, before adding the noise, such

that the low-intensity fricative cues of these tokens had been

partially removed. Therefore, the analysis is based on the

remaining 24 tokens: 6 female (101, 103, 105, 106, 108,

109) and 3 male (111, 112, 118) talkers. A list of the specific

tokens used in the current study, along with each token’s

SNR90, is provided in Table I.

B. Subjects

Eight subjects with mild to moderate hearing loss, rang-

ing from 65 to 84 years, were recruited from the Urbana-

Champaign, IL, community. IRB approval was obtained

from the University Review board. Subjects were paid.

Before running experiments, both ears were tested for

hearing loss and type A tympanograms, consistent with no

middle-ear pathologies. Based on the pure-tone thresholds,

all ears had hearing loss greater than 20 dB for at least one

frequency in the range from 0.25 to 4 kHz (see Fig. 1). The

three frequency average (0.5, 1, 2 kHz) hearing loss for these

eight subjects was 26 dB. All subjects identified American

English as their first language. Subjects had been aware of

their hearing loss for 16 years on average. All except one

(subject 01), who had a 40 dB loss, were not regular users of

hearing aids. Figure 1 illustrates subjects’ audiograms.

As discussed in the Appendix, the hearing loss profile

can be summarized by three parameters, h0, f0, and s0, that

represent the low-frequency hearing loss, the breaking fre-

quency (intercept of the two lines), and the slope of the high-

frequency hearing loss, respectively. These parameters are

provided in Table II for each subject.

C. Insertion gain calculation

This study includes two separate experiments on the

same subjects with the same set of tokens. Stimuli in experi-

ment 1 were presented with flat-gain at the ear’s most

comfortable level (MCLFlat). In experiment 2, stimuli were

presented with a treatment (NALR) insertion gain, at the

ear’s most comfortable level (MCLTreat). In order to deter-

mine the NALR gain, we used the real ear gain (REG) func-

tion that finds the frequency dependent insertion gain (REGf)

based on the pure-tone thresholds (PTT) for individual HI

ears (Dillon, 2001). The function calculates REGf in dB in

two steps:

X ¼ 0:15� ðPTT0:5 þ PTT1:0 þ PTT2:0Þ=3 (1)

and

REGf ¼ X þ 0:31� PTTf � Cf ; (2)

where PTTf is the pure-tone threshold in dB at the measured

frequencies f¼ 0.25, 0.5, 1, 1.5, 2, 3, 4, 6 kHz, and Cf is the

specific gain 17, 8, 3, �1, �1, 1, 2, 2 dB, respectively.

TABLE I. For each consonant-vowel (CV) token used in this study, the

male (M) and female (F) talker labels are listed, along with the correspond-

ing NH SNR90 values (in dB). As discussed in the text, several male talker

fricative consonants (f, s, Z, n) were removed from this study, as indicated

by a dash. Note: due to limitations in graphical software, vowel /A/ is shown

as /a/ and consonants /S/ and /Z/ are shown as /S/ and /Z/ in figures through-

out this manuscript.

CV M-talker SNR90 F-talker SNR90 CV M-talker SNR90 F-talker SNR90

bA m112 �2 f101 �10 pA m118 �14 f103 �17

dA m118 �7 f105 �13 sA — — f103 �13

fA — — f109 �12 SA m118 �16 f103 �15

gA m111 �12 f109 �3 tA m112 �17 f108 �14

kA m111 �13 f103 �11 vA m118 �3 f101 �10

mA m118 �14 f103 �11 ZA — — f105 �17

nA — — f101 �7 zA m118 �17 f106 �18

FIG. 1. (Color online) Audiograms (pure-tone thresholds) of all subjects

participated in this study. Solid lines (closed symbols) indicate left ear and

dashed-lines (open symbols) show right ears. All subjects had high fre-

quency sloping hearing loss. One subject (44) had a notched loss at 4 kHz.

Legend: subjects with average low error are labeled with gray background.

TABLE II. Fitting parameters of the pure-tone threshold of HI ears using

the flat low frequency loss h0, the frequency f0 at which sloping loss begins,

and the sloping high frequency loss s0. � determines the root-mean-square

error of the fit, and MCL shows the overall most comfortable level of ampli-

fication that is selected by the subject in each experiment. Subjects are

ordered based on left and right ears, h0 average values.

Subject
44 46 40 36 30 32 34 01

Ear L R L R L R L R L R L R L R L R

h0 [dB] 9 13 11 18 22 18 19 25 28 25 30 27 34 26 44 47

f0 [kHz] 1 1 1.5 3 2 1 1 1 1.5 1.5 1 1.5 3 1.5 4 3

s0 [dB/Oct] 10 7 20 27 20 11 7 10 22 27 9 14 50 26 33 41

� [dB-RMS] 11 7 9 7 5 5 8 4 3 5 3 3 6 4 2 4

MCLFlat [dB] 82 78 82 82 80 80 68 70 80 80 79 77 84 82 83 82

MCLTreat [dB] 77 77 85 86 80 80 75 75 79 79 81 78 85 85 88 89
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Total insertion gain: In Fig. 2 we show the insertion gain

difference between the two experiments. The treatment gain

þ MCLTreat is corrected by the flat MCLFlat gain, to give the

total gain difference between the two conditions. This shows

that the spread in the gain below 2 kHz has been reduced to

have standard deviation less than 4.4 dB on average.

D. Experimental procedure

To investigate the effect of changing the speech amplifi-

cation from flat to treatment insertion gain, presented at

MCL, all the procedures in both experiments were the same,

other than the insertion gain (REGf). The speech signal was

mixed with speech-weighted noise as described by Phatak

and Allen (2007) to set the SNR to 0, 6, 12 dB and no-noise

(quiet) condition. Presentation order was randomized over

consonant, talker, and SNR. Each experiment was performed

in two separate 30–40 min sessions for each HI ear, with a

brief mid-session break. During the first session, each token

was presented four times at each SNR, resulting in a total of

32 presentations for each consonant (2 talkers � 4 presenta-

tions � 4 SNRs). Based on the subject’s performance, the

second session was designed to repeat the errorful tokens of

the first session in a random order. If the HI ear had no error

for a given token, it was presented one more time.

Otherwise, the token was presented six more times. The total

number of presentations for each consonant thus ranged

from N¼ 40 to 80 for each HI ear (Ntotal¼ 5 – 10� 2 talk-

ers� 4 SNRs).

According to the Vysochanskij and Petunin (1980)

inequality, ten presentations of a token are required for a sta-

tistically significant result, assuming a 95% confidence inter-

val. This criterion was based on the null-hypothesis that a

token with a probability of less than 10% error could be

detected above chance when compared to a token having a

50% error. This method is an example of Fisher’s exact

method, analyzed via a Monte Carlo simulation. The details

of this statistical analysis are described in the Appendix of

Singh and Allen (2012).

A MATLAB
VR

graphical user interface was provided to run

the experiments. All of the data collection sessions were

conducted with the subject seated in a single-walled, sound-

proof booth with the door of the outer room closed. The

speech was presented through an Etymotic ER-3 insert ear

phone, one ear at a time. The contra-lateral ear was not

masked or occluded. To familiarize the subjects with the

testing paradigm, a practice session was run using non-test

tokens. The MCL was determined during the practice ses-

sion. Throughout the remaining sessions the tokens were

randomized.

After hearing each token, the subject was instructed to

choose the response from 14 possible consonants-vowel

labeled buttons that were provided on the screen via a graph-

ical interface. To get more precise results, subjects were

allowed to play uncertain tokens up to two additional times

before making their decision. To reduce fatigue, subjects

were encouraged to take short breaks approximately every

20 min. A detailed description of these experiments is pro-

vided in Han (2011).

E. HI data analysis

The data collected by the experiments was the confusion
matrix as a function of SNR. Since we conducted our study

on 14 CV sounds, each of 16 HI ears resulted in

2� 2� 4¼ 16 confusion matrices of size 14� 14: 2 experi-

ments, each including 2 talkers and 4 SNRs conducted on 16

HI ears (total of 256 confusion matrices). Thus, each of the

24 tokens has an empirical probability distribution defined

by a row of the count (unnormalized confusion) matrix. We

refer to the ith token as CVi; i ¼ 1; 2; :::; 24. The probability

of error of this token is

PeðCVi; SNRÞ ¼
X
j 6¼i

Pfheard CVj j spoken CVig; (3)

where Pii ¼ 1� Pe is the corresponding probability of cor-

rect response (diagonal element). For simplicity in notation,

we may refer to PeðCVi; SNRÞ as Pe. Given the above proba-

bility of error for each of the 24 tokens, the average error for

each ear is then

PeðEar; SNRÞ ¼ 1

24

X24

i¼1

PeðCVi; SNRÞ: (4)

Two other measures are considered. The confusion pat-
tern (CP) for a given token is a plot of one row of the confu-

sion matrix [i.e., PheardjspokenðSNRÞ], as a function of SNR

(Allen, 2005b). This measure shows how the token score and

confusions depend on SNR. Finally, we evaluate the treat-

ment using error rate changes (DPe) as a function of token

(CVi; i ¼ 1; 2; :::; 24) and SNR. Throughout this analysis we

refer to the change in the error between the flat (experiment

1) and treatment gain (experiment 2), defined as

DPeðCVi; SNRÞ � PTreat
e ðCVi; SNRÞ � PFlat

e ðCVi; SNRÞ:
(5)

FIG. 2. (Color online) Difference between the total treatment gain less the

flat-gain, including the MCL for the two conditions. The use of MCL

decreased the spread of the compensation gain below 2 kHz (standard devia-

tion <4.4 dB on average). Legend: subjects with average low error are

labeled with gray background.
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When DPe < 0 (decrease the error), the treatment is said to

improve the token score, whereas when DPe > 0 (increase

the error), the treatment is said to degrade the token.

Additionally, for each individual token, we use the accumu-

lated error differences RDPeðCViÞ defined asX
DPeðCViÞ ¼

X
SNR

DPeðCVi; SNRÞimproved

þ
X
SNR

DPeðCVi; SNRÞdegraded
(6)

to identify the overall benefit each subject received per token

from the treatment gain. When RDPe is negative for a token,

we say that treatment gain degraded that token (increased

the error). Furthermore, one can plot RDPeðCViÞ as a func-

tion of tokens CVi; i ¼ 1; 2; :::; 24 and look into the area

under each curve. This area, denoted by parameter A later in

the paper, is a useful summary metric to determine whether

a subject received benefit or harm from the hearing aid

amplification.

III. RESULTS

This section discusses how the treatment insertion gain

impacts the phone token recognition scores as a function of

SNR, using the metric of changes in error rates [Eqs. (5) and

(6)]. This metric allows us to address the large variability

between HI ears phone recognition, and observe the idiosyn-

cratic token confusions across different subjects.

A. Improvements and degradations due to the
treatment

Figure 3 shows the overall performance change between

the two gain conditions. As described in the methods section,

to assure that the results are statistically significant, each token

was presented between 5 and 10 times at each SNR. The goal

was to determine how the treatment gain improves (DPe � 0)

or degrades (DPe > 0) the token responses for each ear.

As shown in Fig. 3, 57% of the tokens had zero error for

both flat and treatment insertion gains. For the remaining

43% of cases, the treatment changed the error. The ideal

case is improvements, when the error reduces (DPe � 0).

Degradations are when the error increases (DPe > 0) due to

the treatment. We give a high priority to degradations, since

treatment increased the token error (DPe > 0). This hap-

pened 12% of the time.

Figure 4(a) illustrates the overall improvements vs deg-

radations, broken down by consonants (not token), at the

four different SNR conditions. The abscissa shows the 14

consonants, sorted by total number of improvements. The

ordinate gives the number of tokens that either improved or

degraded due to the treatment. The gray scale code (color

online) separates the improvements and degradations by

SNR. The sounds /vA/, /bA/, and /zA/ had the greatest

improvements, while /vA/, /bA/ had the most degradations.

Although we used robust tokens according to their SNR90

[see Table I and Phatak and Allen (2007)], the majority of

tokens had some degradations, even at quiet. Recall that by

design, NH subjects have no error in this task.

Figure 4(b) illustrates the improvements and degrada-

tions for each of the 16 ears, sorted by the total number of

improvements. As a general rule, the treatment gain gave

more improvement than degradation for every subject. Ear

44L had the smallest error, and thus the least room for

improvement. However, the number of degradations was

nearly equal to the improvements, thus there was no signifi-

cant net improvement. Ear 36L had 10 improved tokens and

only 2 degradations, thus received a net improvement from

the treatment. Note how 30L also gained a large 32 token

improvement with only 5 degradations, thus 30L received

the largest net benefit from the treatment gain, slightly more

than 34R and 30R.

There is a large variability in the improvements across

both consonants and subjects. The degradations are also

highly variable across token and ear, but they are always less

than the improvements. In a few ears, degradations approach

improvements (e.g., 32L; 32R; 44L).

B. Error summary

Figure 5 compares the average probability of error

PeðEar; SNRÞ for the 16 ears for the flat (left) and treatment

(right) gains. On the left (flat-gain), the log-error

PeðEar; SNRÞ is approximately linear as a function of SNR,

with subject dependent slopes, consistent with the articula-

tion index (Allen, 2005a; Toscano and Allen, 2014). This

slope and intercept are key metrics of speech recognition

loss for each ear.

Following the treatment, the log error [%] behavior col-

lapses into two families of curves, such that the curves (sub-

jects) at SNRs above 6 dB are divided into two groups. Half

of the subjects do not strongly depend on SNR above 6 dB

and (excluding subject 01) plateau around 10% error (high-
error group). The other half continue to improve with SNR,

reaching an error rate of less than 2% at quiet (low-error
group). The high-error (10%) limit will be discussed in more

detail in Sec. III C.

A detailed comparison of PeðEar; SNRÞ shows that as

the SNR increased, both the low-error and high-error ears

received significant benefits from changing the gain from flat

to treatment. However, high-error ears still have significant

average error, even at quiet (e.g., 10%). Increasing the SNR

at the treatment gain reduces PeðEar; SNRÞ for these

FIG. 3. (Color online) Number of improvements and degradations due to

the treatment gain across the 24 tokens, 4 SNR conditions, and 16 ears (a

total of 1536 presentations). Of these almost 2/3 (864¼ 57%) had zero-error

(Pe¼ 0) in both conditions. For the remaining 663 errorful tokens, nearly 1/

3 (482¼ 31%) improved (reduced error) and 1/8 (181¼ 12%) degraded
(increased error).
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subjects down to the 10% saturation limit above

SNR¼ 6 dB. Figure 5 highlights the utility of the logarithmic

probability of error. On a linear scale, we would not see this

grouping effect, nor would we see the 10% saturation limit.

While the average probability of error is a useful mea-

sure of overall performance, it hides the details of the

immense variability in token recognition over ears, SNR and

tokens. For example, observe that the left and right ears of

subject 30 (�) become separated above SNR¼ 6 dB for the

treatment gain, while they were similar for flat-gain. Another

observation is for subject 32 (�), who had 2% error at

SNR¼ 12 dB and quiet for flat versus 7%–10% error for the

treatment gain.

C. Individual differences emerging the idiosyncratic
behavior

To understand what is going on, we need a more detailed

analysis of the errors to determine the idiosyncratic contribu-

tion of individual tokens. Focusing on individual token errors,

we further expand the improvement/degradations of Fig. 4 (a)

to observe the error rate difference between improved and

degraded tokens for each subject. Figure 6 illustrates the accu-

mulated DPe (total sum of DPe) of individual tokens across

SNRs for all subjects. The line in each panel indicates the

overall difference between improved and degraded tokens’

DPe (i.e., RDPe ¼ RhSNRiDPimproved
e þ RhSNRiDPdegraded

e ). The

total area under this curve is shown at each panel as metric A.

Subjects are sorted based on A, averaged across left and right

ears. The value of A is a useful summary metric of the benefit

the ear received from treatment gain. If A is negative (e.g.,

subject 32), the treatment is a net degradation. For subject 32,

the speech recognition is degraded at 6, 12 dB SNR and quiet

for both ears. A modest benefit was observed at 0 dB SNR.

Figure 6 shows that there is a large variability in degra-

dations across subjects, tokens, and SNRs, and it is not trivial

to generalize the error patterns for a given subject. To study

the sources of degradations for each subject, we have

examined the most overall degraded tokens at all SNRs (i.e.,

smallest RDPe value) and generated the confusion patterns

(CP) of the most degraded tokens. This way it becomes pos-

sible to observe the role of masking noise as well as the con-

sistency of subjects for high error responses.

1. Summary confusion patterns

Figure 6 has isolated the cases where the treatment

increases the error. According to Fig. 6, some subjects had

significant degradations for a few tokens. To look deeper at

these cases, Fig. 7 presents pairs of confusion patterns (CPs)

for ten tokens in which the probability of correct response at

quiet was reduced more than 20%, given the treatment. The

CP is a plot of a row of the confusion matrix as a function of

SNR. The row defines the target [see label at top left corner

of flat-gain (right) CP; e.g., for subject 34 L, the target token

is female /fA/ (F/fA/)], and the sounds confused with the tar-

get are displayed in terms of their response probability as a

function of SNR. For each pair, the left CP corresponds to

FIG. 5. (Color online) Average proba-

bility of error [Pe ðEar;SNRÞ] for all

ears in log-percent (%) versus SNR

[dB] for the flat (left) and treatment

(right) gain experiments. Each line rep-

resents an ear [solid lines (closed sym-

bols): left ear, dashed lines (open

symbols): right ear]. Wherever

Pe ðEar;SNRÞ is zero, the curves are

truncated at the bottom of the plot

(shown by #).

FIG. 4. (Color online) Overall number of token improvements (DPe � 0) and degradations (DPe > 0) due to the treatment. (a) Change in the number of errors

as a function of the presented consonant þ /A/ (included all available tokens for such consonant). Note the usage of symbol “S” to identify consonant /S/, sym-

bol “Z” to identify consonant /Z/, and symbol “a” to identify vowel /A/. (b) Change in the number of errors as a function of the individual ears. The positive

direction indicates an improvement, while the negative direction indicates a degradation. The gray-scale code shows different SNRs (a darker shade represents

higher noise). The highlighted percentage shows the net improvements (31%) and degradations (12%) across all presentations.
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flat-gain, while the right CP corresponds to the treatment

gain.

As shown in Fig. 5, the low-error ears responded to

improved SNR, down to quiet, whereas the high-error ears

have a saturated error around 10%, independent of SNR,

above 6 dB. The ten tokens of Fig. 7 are from the high-error

group. Thus the degradations and the high-error tokens are

highly correlated.

Interesting cases in Fig. 7 are subjects 32L (row 3, col-

umns 3–4) and 32 R (row 4, columns 3–4) for target token

male /vA/. For the flat-gain cases, the scores start out at

100% in the quiet condition for both ears. At 12 dB SNR, the

scores drop to between 65%–75%, with the main confusions

being /nA/, /mA/. At 0 dB the scores for the target /vA/ are

near chance, and the number of confusions is around 4. In

the left ear the main response is 60% /fA/ and in the right ear

/vA/ and /mA/ are tied at 33% each. Given the treatment,

however, the left ear is reporting /fA/ 100% and the right ear

60% at quiet. At 0 dB SNR the target is reported correctly

for both ears at 60%. In the left ear at 12 dB, subject 32

reports the target correctly 100%. This is highly significant

to report the correct response for all 10 trials, but in quiet

then to switch to /fA/ 10 out of 10 trials. Subject 32 is very

systematic, but struggling with the perception of /vA/, due to

confusions in the cues, as a result of applying the treatment

gain and added noise. This subject has similar interactions

with audible cues of target /bA/ (row 3, columns 1–2) and

/zA/ (row 4, columns 1–2).

2. An example of manipulation of the insertion gain

Given the specific confusions introduced by the treat-

ment, along with a precise knowledge of the speech cues

used by normal hearing listeners (Allen and Li, 2009), we

FIG. 6. (Color online) Accumulated

error differences (RDPe) for each sub-

ject; the line shows the difference

between improved and degraded

tokens error. Abscissa shows the 24

male and female talker/consonants (the

vowel /A/ is omitted to save space, and

consonants /S,Z/ are shown as /S,Z/).

(A) in each panel shows the area under

the curve.

FIG. 7. (Color online) Comparison of

confusion patterns (CP) for ten

degraded tokens, that for the quiet con-

dition, contribute the most to the net-

degradation in summary metric A in

Fig. 6. In each panel, the CP on the left

is the flat-gain condition and the CP on

the right is the treatment gain. The sub-

ject and target token are identified in

the flat-gain CP, in the upper left cor-

ner (the first subject is 34L and the first

target token is female /fA/). By study-

ing the nature of the confusions as a

function of SNR it may be possible to

understand what the subject’s strategy

was under that specific condition.
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can begin to understand why some HI ears failed to benefit

from the treatment. For example, in Fig. 7, subject 34L in

flat-gain (row 1, column 1) had perfect scores for /fA/ above

0 [dB], but the treatment (column 2) reduced the score in

quiet to 60%. A second example is 32L for target /vA/ (row

3, column 4), where the score in quiet dropped to zero

(100% error). If we were to reduce the treatment gain in

small steps, and remeasure the few errorful tokens, we would

presumably find an optimum gain. The same strategy should

apply to 34R (row 2, column 4), and other similar cases. Of

course, by changing the treatment gain, one may introduce

some new error for tokens that previously had no error, but

if that happens, it would provide even greater insight. The

procedure could achieve an optimal gain rule that settles on

the best treatment gain (lowest error rate among all test

tokens). Use of the RDPe analysis would greatly reduce the

testing time for the fitting process, due to real-time monitor-

ing of a relatively small number of token errors.

IV. DISCUSSION

A major complication of the HI phone recognition anal-

ysis is the idiosyncratic variability across tokens for each

subject. Consonant confusions are complex functions of ear,

token, SNR and treatment gain. The key question addressed

here is how an audiologist can identify and prioritize tokens

based on phone recognition experiments, to prescribe the

best treatment gain. It seems likely that plasticity will play a

role. By taking advantage of the small numbers of significant

errors and idiosyncratic subject variability in consonant rec-

ognition scores, we can classify subjects based on a token

speech metric such as RDPe, to ultimately improve the treat-

ment gain protocol. An efficient tool could change the clini-

cal landscape.

Clearly, too much treatment gain can be harmful for

some tokens. We have tested in flat-gain at MCL, and

found that audibility is not an issue. Note that audibility/

detectability of a stimulus differs from correct recognition

of that stimulus. For example, the token can be audible for

the subject, but at the same time, parts of its spectrum,

needed to identify the token, remain masked. Trevino and

Allen (2013b) found large differences in error for the same

consonant spoken by two different talkers. It is unlikely

that audibility is the issue, if the two sounds are at the same

RMS and SNR level, and one is clear and the other 100%

error (all these sounds are recognizable to NH ears). Token

dependent conflicting cues are likely the explanation of

such anomalous cases (Li and Allen, 2011; Kapoor and

Allen, 2012; Cole, 2017).

For the majority of subjects, more than half of the

sounds have zero error, across all SNRs. About 1/3 of the

corpus have large systematic errors (Fig. 4). Given the bi-

modal nature of the errors in Fig. 5 (right panel), averaging

the few errors with the large number of zero-error tokens,

distorts the statistics (Trevino and Allen, 2013b; Toscano

and Allen, 2014). There are large variations in degradations

at different SNRs among ears. It seems clear that based on

the degradations, we need to tune the gain formula to

minimize them. It is also likely that these degradations are

sounds that could be learned given time and feedback.

When we investigated individual token errors, which

define the improvement and degradations, as illustrated in

Fig. 4, we found a large variability across individual conso-

nants and subjects, making it difficult to draw conclusions

about the impact of the treatment gain without well defined

metrics.

Studying the average error of each ear at two different

insertion gains, seemed to be a widely accepted measure to

analyze benefits received from the treatment gain (Fig. 5).

What is missing in average error analysis, is a way to parse

out subjects by quantifying the degree of speech loss. It has

been widely assumed, that the average error could be a rea-

sonable measure of speech loss. However, we now know this

assumption is leading to a weakened metric (score or aver-

age probability correct), since the average error can be

poorly correlated with the error of a particular token

(Kapoor and Allen, 2012; Trevino and Allen, 2013b; Han,

2011). To reduce the test time in clinic, those few tokens

having large confusions, need to be identified. As shown in

Fig. 6, only a small number of sounds have significant error,

with a complex dependence to SNR. The exact nature of this

dependence is shown in the confusion patterns of Fig. 7.

To address the large variability of Fig. 4, we expanded

the improvement/degradations into the accumulated error

differences for each token (Fig. 6). Given the token error dis-

tribution, we were able to directly compare the token recog-

nition for flat and treatment gain, for all ears. For low-error

ears, RDPe either remains close to zero, for ears that had

good performance at both flat and treatment gains (e.g., sub-

jects 44, 36, and 40R), or has large improvement spikes for

some tokens (e.g., ears 30L and 40L). High-error ears had

large errors at both flat and treatment gain, thus no specific

conclusion can be made through net-improved tokens.

However, audiologists can focus on largest degraded tokens

for high-error ears when adjusting the hearing aid amplifica-

tion. The process could continue until settling down on a

gain rule that minimizes the total degradations.

The accumulated error differences (RDPe) shown in

Fig. 6, informs us on how tokens responded to the treatment.

The effectiveness of the treatment gain is quantified by the

area under the curve. If the RDPe area (A) is negative, it

shows that the treatment is too aggressive.

Since we tested at subject’s MCL gain at both flat and

treatment experiments, the applied insertion gain (REG)

adjusted to MCL contained some attenuation at low frequen-

cies for some subjects (Fig. 2). The MCL adjustment was

necessary since these subjects found the treatment gain too

loud, and adjusted their MCL accordingly. One might

assume that some of degradations happened because of this

attenuation at low frequencies. But this seems unlikely since

most of the hearing loss of subjects is above 2 kHz (see Fig.

1) and most of the errors are high frequency sounds such as

/k,v,z,f/. While low frequency attenuation could be a reason

for some degradations, additional scrutiny on degraded

subject-token pairs prevents generalization of such an argu-

ment. Examples include subjects 36L and 46L who had high-

est low frequency attenuation in Fig. 2; while 36L was one of
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the lowest error subjects, 46L was one of highest error sub-

jects in both experiments.

According to Fig. 6, subject 46L had the most degrada-

tions for female /zA/ and /ZA/ tokens, and 36L had the most

degradations for male /bA/ token. These three sounds, have

primary cues in low (/bA/) or high (/zA,ZA/) frequencies. We

can conclude that low frequency attenuation provided by

REG-MCL could not be the primary factor of such degrada-

tions for ear 46L, while in case of 36L it can be a factor.

However, token male /bA/ was found to be fragile even for

NH listeners (Phatak and Allen, 2007).

About half of the subjects have some tokens with

RDPe < �1. In such cases there is a clear need for optimiz-

ing the treatment gain. The small number of missed sounds,

and the possibility that they are related to some internal dis-

tortion, is reminiscent of Plomp’s distortion measure. If the

phone error is zero at flat-gain, the ear has good audibility,

without any frequency-dependent treatment. In such cases,

the treatment should be focused on reducing the error on that

small subset of high error tokens. If changing the treatment

gain introduces new token errors, sorting tokens based on

degraded RDPe directs to the most significant token errors.

Eventually, one must be obliged to compromise over the

degree of error for a few tokens in order to reduce the overall

error. At this fork, plasticity will likely play a role.

An asymmetry between left and right ears in Fig. 6 can

be interesting. As an example, for subject 34, for most of the

tokens the right ear received benefit from the treatment gain

at 0, 6, and 12 dB SNR, while the left ear received significant

benefit at 0 dB and slight benefit at 6 dB (see Fig. 6, first

row, columns 3–4, and also Fig. 7, row 2). For both left and

right ears at quiet, tokens are either gain-independent or

show a degradation. The three parameter hearing loss profile

for this subject (Table II) shows that left and right ears have

a large difference in the hearing loss profile, yet this differ-

ence only shows up in RDPe at 12 dB SNR.

Once the degraded consonants have been identified,

confusion patterns become the tool of choice, since CPs pro-

vide insight as to why the Treatment led to large degrada-

tions. Sample CPs in Fig. 7 show that the error can become

worse at quiet with treatment. It is also interesting to look at

the confusions that are created by the treatment. Examples

include /vA/! /fA/ (voicing), /vA/! /pA/ (voicing and affri-

cation) /zA/! /ZA/ (place), and /kA/! /tA/ (place).

Conflicting cues: Several relevant studies have noted how

token dependent conflicting cues can produce non-monotonic

errors as a function of SNR (Li and Allen, 2011; Kapoor and

Allen, 2012). Examples of this are seen in the CP of subject

32L (row 3, columns 3–4 of Fig. 7) at quiet, where /vA/ is

reported correctly in flat-gain, but with treatment, subject

reported /fA/ 100% of the time. Subject 34R (row 2, columns

3–4) had a similar reversal for target /kA/, which with treat-

ment were reported as /pA/ and /tA/ in quiet. Such non-

monotonic errors were reported by (Kapoor and Allen, 2012)

which were shown to be due to the masking of audible con-

flicting cues. Cole (2017) studied plosives and found out that

HI ears use the same primary cues as NH ears do, and con-

flicting cues explain most of the confusions in HI ears.

V. SUMMARY

(1) While the treatment gain largely results in improvement,

it dramatically fails for a small subset of ears and tokens.

As summarized in Fig. 3, the treatment gain helped to

improve the phone recognition of HI ears in 31% of pre-

sented tokens, while it led to degrading the phone recog-

nition in 12%. The majority (57%) of tokens had

zero-error for both flat and treatment gains, thus are

independent of the gain treatment. These many tokens

do not need to be considered by the hearing aid fitting

procedure, as long as the modified gain falls between the

flat and treatment gains. The question of what speech

cues HI ears are listening for is the subject of continuing

efforts in Human Speech Recognition group.

(2) Figure 4 shows that when we compare ears based on the

improvements and degradations, we see a large varia-

bility across both consonants and subjects, making clear

the importance of viewing each ear and token

independently.

(3) SNR is a major factor in HI consonant confusions since

the treatment gain is more effective at lower SNRs

(0 dB) than higher SNRs (quiet) (Fig. 4). It is also possi-

ble that a token becomes more error-prone as the SNR is

increased. In such cases, the masked conflicting cues

become more audible, thus more confusions. Such con-

fusions might be avoided over time, given appropriate

feedback and training.

(4) As shown in the left panel of Fig. 5, the average error at

quiet is nearly uniformly distributed on a log scale, from

less than 1% to 50%. Following the treatment (right

panel), the average error bifurcates into two groups hav-

ing errors of 1% and 10% in quiet. The treatment sepa-

rated the subjects above 6 dB SNR, where the noise has

reduced masking. While the low-error ears receive more

benefit from the treatment as the SNR increases, the

high-error ears saturate at 10% error above 6 dB SNR.

To explain this bifurcation, one must focus on errors at

the token level.

(5) As shown in Fig. 6, the accumulated error differences

(RDPe) between the two gain treatments gives a simple

display of how treatment might help each individual HI

ear. Illustration of RDPe for tokens shows the large vari-

ability across subjects, tokens and SNR. This illustration

quantifies the number of tokens that degraded the most,

thus need less gain treatment. It also shows whether the

left and right ears of the same subject received different

benefit from the treatment. The area under RDPe curve is

a useful summary metric to measure the net benefit from

the treatment gain.

(6) Identifying the target tokens for confusion patterns of

Fig. 7 has been simplified by using the accumulated error

difference analysis.

(7) Accumulated error differences of Fig. 6 along with con-

fusion patterns of Fig. 7 constitute the way to evaluate

CV speech recognition in HI ears for tuning a treatment,

to minimize speech loss.
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APPENDIX: FITTING AUDIOMETRIC MEASUREMENTS

The majority of the ears in this study have slight-to-mod-

erate hearing loss with high-frequency sloping configurations.

According to Trevino (2013), the audiometric configuration

of low-frequency flat loss with high-frequency sloping loss

can be modeled as a piece-wise linear function of the form

PTTðf Þ ¼ h0; f � f0;
h0 þ s0ð log2ðf=f0ÞÞ; f > f0;

�

where PTT(f) is the approximated hearing loss in dB and f is

frequency in kHz. The parameter f0 estimates the frequency

at which the sloping loss begins; h0 estimates the low-

frequency (f � f0) flat loss in dB; s0 estimates the slope of

the high-frequency loss in dB/octave. The parameters are fit

to minimize the root-mean-square (RMS) error �, in dB. The

RMS of a fitted curve is calculated as

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XfN

f¼f1

ðPTTðf Þ � HLðf ÞÞ2
vuut ;

where N¼ 10 is the number of measured frequencies in hear-

ing loss profile, HL(f) is the measured hearing loss at fre-

quency f, PTT(f) is the approximated hearing loss at

frequency f, and f1; :::; f10 ¼ ½0:125; 0:25; 0:5; 1; 1:5; 2; 3;
4; 6; 8 kHz�. The resulting parameters and RMS � values for

each model fit, as well as the MCL values for each ear at

either flat and treatment gains are shown in Table II.
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